Casimir Operators of Groups of Motions of Spaces of Constant Curvature
نویسنده
چکیده
Limit transitions are constructed between the generators (Casimir operators) of the center of the universal covering algebra for the Lie algebras of the groups of motions of n-dimensional spaces of constant curvature. A method is proposed for obtaining the Casimir operators of a group of motions of an arbitrary n-dimensional space of constant curvature from the known Casimir operators of the group SO(n + 1). The method is illustrated for the example of the groups of motions of four-dimensional spaces of constant curvature, namely, the Galileo, Poincare, Lobachevskii, de Sitter, Carroll, and other spaces.
منابع مشابه
Commutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملRigid 6-dimensional h-spaces of constant curvature
In this paper, we continue studying the 6-dimensional pseudo-Riemannian space V 6(gij) with signature [++−−−−], which admits projective motions, i. e. continuous transformation groups preserving geodesics. In particular, we determine a necessary and sufficient condition that the 6-dimensional rigid h-spaces have constant curvature.
متن کاملAlgebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 1 2n(n − 1) + 1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25–33]. We shall prove that the curvat...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کامل